UROC: WHAT’S IN A TEMPLATE?

Hazel Levine, mentor Dan-Adrian German

Luddy School of Informatics, Computing, and Engineering — Indiana University Bloomington

Introduction

This project presents a counterexample to the introduction of accumulator-passing style as
shown in How to Design Programs. We note that in the presence of lambdas and higher-
order functions in the ISL+ language, a lambda can effectively become a self-accumulator,
thus obfuscating the provided definition. To accomplish this, we use the fix-point of a
non-recursive function that builds a lambda. Because of the meaning of a fix-point in the
lambda calculus, this is a recursive function that uses itself as an accumulator.

Implementation

We define a function fix taking two arguments, a function and an argument to apply to
it. Per the definition of a fix-point, this function continually applies itself to its result until
the output converges. We also define a data structure Pair that contains two arguments
to work with fix.

We then define a function rev-step that takes a Pair containing a list and a function that
takes a list and returns a list. This function follows the structural recursion template for
list processing, and via a somewhat roundabout way, the template for processing a Pair.
However, this function is not recursive. Upon application to a non-empty list, it returns a
pair of the rest of the list and a function that takes the result of future computation and
conses the element of the list to it.

Finally, we define a function rev that calculates the fix point of rev-step and applies its
result to the empty list. This results in a fully functional reverse function.

Summary

To construct this counterexample, we construct a program in ISL+ utilizing a naive, non-
combinator implementation of the fix point. This implementation is equivalent to something
akin to the Y combinator:

lambda f.(lambda x.f(zx))(lambda z.f(zx))

This implementation uses the fix point to calculate a function that when applied, reverses
a list. A non-accumulator implementation of a reverse function typically uses up O(n?)
time, however our implementation runs in O(n). Our implementation uses up linear space,
however, as opposed to the traditional accumulator-based solution using constant space.

Code

(define (fix £ xs)
(let ([res (f xs)])
(1f (equal? xs res)
Ires
(fix £ res))))

(define-struct pair [fst snd])

; rev-step : [Pair [Listof A] [[Listof A] -> [Listof A]]
. -> [Palr [Listof A] [[Listof A] -> [Listof A]]
(define (rev-step a)
(let ([1lst (pair-fst a)] ; the list to work with
[fun (pair-snd a)]) ; the function for the next computation
(cond [(empty? lst) (make-pair 1lst fun)]
else (make-pair (rest lst)

(lambda (res) ; res 1is the result of future computation
(cons (first 1lst) (fun res))))])))

» Tev : [Listof A] -> [Listof A]
(define (rev 1lst)
((pair-snd (fix rev-step (make-pair lst identity))) empty))

ETEX TikZposter



