Matrix Multiplication

Overview

Two programs were written and run on the dataflow machine at the Mathematical Institute of the Serbian Academy of Sciences. The first program performs matrix multiplication on two input streams and returns a single stream. All streams in this program are one-dimensional vectors of the same fixed length. In order to change the length, the size needs to be modified in the kernel, kernel manager, and host. Both inputs are created in the host and passed to the dataflow engine (DFE) at runtime. After all the calculations are performed in the engine, the output stream is passed back to the host.

The second program implements Bubble Sort. Bubble Sort uses nested for-loops and the idea is to swap two neighboring indexes if it is out of order. In the host code, this is easily done by having a condition that checks if the item at the current index is bigger than the next item. If it is, the values stored in both indexes are swapped. Bubble sort is implemented in a very similar manner in the kernel.

Both programs demonstrate that simple control-flow solutions can be converted for dataflow programming. The benefits of using dataflow over control flow systems are faster runtimes and power reductions (Milutinovic, 2018, p 370). This is achievable due to the way DFE’s are designed. A single DFE contains thousands of cores and each core computes a single type of arithmetic operation (Maxeler, 2015, p. 2) Multiple cores are able to process on neighboring streams simultaneously, and this is often referred to as computing in space (Maxeler, 2015, p. 2). While the difference in performance with small sets of data may be minute, it is on BigData and Machine Learning problems where dataflow programming noticeably triumphs control-flow implementations.

References


https://doi.org/10.1186/s40537-014-0010-z

Contact Information: kyoshimo@iu.edu