

What is Consensus Clustering?

Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms. Another term for this is called cluster ensembles.

<u>Figure 1</u>

For this research project we used a dataset called Cassini. This was most viable to us because it was two dimensional (Which is uncomplicated to plot... see Fig. 1)

Figure 1: Different partitioning of Cassini dataset using k-means with different number of clusters centers

- Cassini dataset has 1000 datapoints which are drawn from uniform distribution on 3 structures. We generated the above list of partitions by running k-means clustering 9 times with different 'k' values (clusters).
- From the plots of the k-means, we can see that the quality changes with the change in number of clusters.
- Our research comes in when we need to find a consensus plot (1), from the original (9) in figure 1.

EMD–Based Consensus Clustering

Team Members: Noah Probst, Mentor: Md Taufique Hussain

Figure 2: Quality of different partitionings of Cassini dataset. For first two, more is better. For the third, less is better.

• Below are the algorithms we used to come up with our new method of EMD-Based CC.

Algorithm 1 An overview of consensus clustering of two input partitions.
Input and Output: Inputs are two partitions P_1 and P_2 and output is a consensus partition
P_c of the same data
1: procedure ConsensusTwo(P ₁ , P ₂)
2: $F \leftarrow EMD(P_1, P_2)$ \triangleright Get flow by solving EM
 Prune insignificant edges from F
 Form P_c by merging each connected component to form a cluster
5: return P _c
Algorithm 2 An overview of consensus clustering of multiple input partitions. Input and Output: Input is a list of partitions $P_1, P_2,, P_n$ and output is a consense partition P_2 of the same data
1: procedure Construction (P, P, P)
2: while Length of the partition list is two or more do
 Find closest two partitions P_a and P_b in the partition list according to EMD
4: $P_c \leftarrow \text{CONSENSUSTWO}(P_a, P_b) \Rightarrow \text{Get consensus of two closest partition}$
 Remove P_a and P_b from the pool
6: Add P _c to the pool
7: return only remaining partition in the pool

What is EMD?

To understand our algorithms, one must first understand Earth Movers Distance. EMD is a method to evaluate dissimilarity between two multi-dimensional distributions in some feature space where a distance measure between singles features, which we call ground distance is given. EMD essentially just optimizes the work needed to be done. When put into the algorithm, it 'prunes' the 9 plots into 1. In figure 3 (Top of third column on poster), the right plot is the final output. This is the plot we return in the two algorithms.

Figure 3: Scatter plot of Cassini data and clustering. First plot represents the structure of the data. Second plot represents clustering structure of best k-means clustering. Third plot represents clustering structure of consensus of many k-means clusterings.

Conclusion and Possible Next Step:

- In **conclusion**, and looking at our research project overall, we first took a dataset (Cassini), and took the k-means of it nine times.
- Then, we used two algorithms and EMD to 'prune'/narrow down those nine into one consensus clustering plot in figure 3.
- Looking into the future and thinking of the next step possibly for this research project, we look to compare our method of consensus clustering with other similar ones.
- One we have considered to try and compare against is a function in a package called CLUE. This function is in 'R' code and is named cl_consensus. If we were to use the same dataset on the cl_consensus algorithm, then we could do a clean comparison and improve our method.
- In doing this, there is a problem because our method is in python, and cl_consensus is in 'R.' This problem can be solved however by using rpy2 in python to import 'R' libraries. Once there, we can use k-means the same on the same dataset, and then compare the outputs.
- Another next step idea is to look at the different parameters and test different ones out.

import rpy2
print(rpy2.__version__)