EMD-Based Consensus Clustering

LUDDY

SCHOOL OF INFORMATICS,
COMPUTING, AND ENGINEERING

What is Consensus Clustering?
Consensus clustering is a method of aggregating (potentially
conflicting) results from multiple clustering algorithms. Another term
for this is called cluster ensembles.

Figure 1
For this research project we used a dataset called Cassini. This was
most viable to us because it was two dimensional (Which is
uncomplicated to plot... see Fig. 1)

number of clusters =2 number of clusters =3 number of clusters =4

15 2 % | s 2 15 2 s
T T BRErT

&

o E o
S5 1o 65 oo 05 10 15 -15 -i0 65 00 05 10 15 -15 10 65 00 05 1o 15

3500 350 3 FY 24
Rl R 8
BB IE BB
o vl 1o o 1o ot
- 5& - Q“‘.s ol 2

o 0
-5 1o -6s oo 05 10 15 -1s -0 -5 o0 o5 10 15 -1s -lo 65 00 05 10 1s

| g o | o] RS | | gt R

< ks
05 05 - 05 ]
- e TN o - A .
DR B gy

20 20 20
-is -lo 05 0o o5 1o 15 -15 -lo 65 oo 05 10 15 ~-ls -lo -65 oo s 1o 15

Figure 1: Different partitioning of Cassini dataset using k-means with different number of
clusters centers

Cassini dataset has 1000 datapoints which are drawn from uniform
distribution on 3 structures. We generated the above list of partitions
by running k-means clustering 9 times with different ‘k’ values
(clusters).

From the plots of the k-means, we can see that the quality changes
with the change in number of clusters.

Our research comes in when we need to find a consensus plot (1),
from the original (9) in figure 1.

Team Members: Noah Probst, Mentor: Md Taufique Hussain

J’ s \\
. -/
/ AR e
/ <]/
/ o / \
\ osf | \
7

Our Method

Figure 2: Quality of different partitionings of Cassini dataset. For first two, more is better.
For the third, less is better.

* Below are the algorithms we used to come up with our
new method of EMD-Based CC.

Algorithm 1 An overview of clustering of two input partitions.
Input and Output: Inputs are two partitions P; and P, and output is a consensus partition
P, of the same data

1: procedure CONSENSUSTWO(Py, Py)

2 F « EMD(P,, Py) > Get flow by solving EMD
3 Prune insignificant edges from F'
4
5

Form P, by merging each connected component to form a cluster
return P,

Algorithm 2 An overview of consensus clustering of multiple input partitions.
Input and Output: Input is a list of partitions Py, P, ..., P, and output is a consensus
partition P, of the same data
1: procedure CONSENSUSALL(P,, P, ..
2 while Length of the partition list
3 Find closest two partitions P,

P)

two or more do
d P, in the partition list according to EMD

4 P. +~ CoNSENSUSTWO(P,, P;) > Get consensus of two closest partitions
5 Remove P, and P, from the pool
6: Add P. to the pool
7 return only remaining partition in the pool
What is EMD?

To understand our algorithms, one must first understand Earth
Movers Distance. EMD is a method to evaluate dissimilarity
between two multi-dimensional distributions in some feature

space where a distance measure between singles features, which
we call ground distance is given. EMD essentially just optimizes
the work needed to be done. When put into the algorithm, it

‘prunes’ the 9 plots into 1. In figure 3 (Top of third column on

poster), the right plot is the final output. This is the plot we return
in the two algorithms.

Best K-Means Consensus
. i . .

S, ) S,
15 (3 154 15 (3
10 101 10

4 3

0s 0sq 05
00 004 00
—os 054 o5
“10 104 “10
15 A 151 15

* <
20 2

o4 20
-1s 10 65 00 05 10 1s -Is 1o 05 oo 05 10 15 -1s 10 —65 00 05 1o 15

Figure 3: Scatter plot of Cassini data and clustering. First plot represents the structure of
the data. Second plot represents clustering structure of best k-means clustering. Third plot
represents clustering structure of consensus of many k-means clusterings.

Conclusion and Possible Next Step:

In conclusion, and looking at our research project
overall, we first took a dataset (Cassini), and took the k-
means of it nine times.

Then, we used two algorithms and EMD to
‘prune’/narrow down those nine into one consensus
clustering plot in figure 3.

Looking into the future and thinking of the next step
possibly for this research project, we look to compare our
method of consensus clustering with other similar ones.
One we have considered to try and compare against is a
function in a package called CLUE. This function is in
‘R’ code and is named cl_consensus. If we were to use
the same dataset on the cl_consensus algorithm, then we
could do a clean comparison and improve our method.
In doing this, there is a problem because our method is in
python, and cl consensus is in ‘R.” This problem can be
solved however by using rpy2 in python to import ‘R’
libraries. Once there, we can use k-means the same on
the same dataset, and then compare the outputs.
Another next step idea is to look at the different
parameters and test different ones out.

import rpy2
print(rpy2.__version_ )





