Reversible Classical Computing

Problems
- How can a reversible classical circuit be modeled via modeling software?
 - Must work both forwards AND backwards
 - Maintain information throughout/no loss of information
- Can the model be achieved in the real world?
 - Same requirements, with real world limitations

What is Reversible Classical Computing?
- All information persists
- Able to reverse from output back to input
- Normal gates lose information
 - Via having 2 input and 1 output
- Reversible classical adder has persisting information
 - Via having equal inputs and outputs
- Halfway step between classical computing and quantum computing

Billiard Ball Model
- Consists of billiard balls and various walls
- 1: presence of a ball, 0: no ball present
- Calculations come from collisions

Half-Adder
- Uses three AND Gates and an XOR Gate
- The first two Gates are AND Gates used with a control to duplicate the inputs

Or Gate
- Utilizes 4 gates to make an OR gate
- Two NOT Gates followed by an AND gate
- Another NOT Gate at the end

Lane Model
- Uses Toffoli Gate, C-Not gate and Identity gate
- Sensor pads determine will the balls are at
- Doors open based off of the sensor data

Comparison
- **Billiard Ball**
 - Shows gate interaction
 - Requires extreme precision to work as intended
- **Lane Model**
 - More reliable
 - Requires sensors and motors